

Past Papers Int 2 Chemistry

2011 Marking Scheme

Grade	Mark Required		° condidatos abienina anada		
Awarded	(/80)	%	% candidates achieving grade		
Α	+51	63.8%+	36.9%		
В	+43 53.8%+		22.5%		
С	+36 45%+		18.6%		
D	+32	40%+	8.4%		
No award	<32	<40%	13.6%		

Section:	Multiple Choice	Extended Answer		
Average Mark:	19.8	/30	26.5	/50

2011 Int2 Chemistry Marking Scheme									
M <i>C</i> Qu	Answer	% Pupils Correct	Reasoning						
1	В	71	☑A aluminium is in group 3 and is not a transition metal ☑B cobalt is a transition metal and chlorine is a group 7 halogen ☑C oxygen is in group 6 and not a halogen (halogen atoms form halide ions) ☑D sodium is in group 1 and is not a transition metal						
2	D	71	 ☒A magnesium hydroxide contains 3 elements (magnesium, hydrogen and oxygen) ☒B magnesium phosphate contains 3 elements (magnesium, phosphorus and oxygen) ☒C magnesium sulphite contains 3 elements (magnesium, sulphur and oxygen) ☒D magnesium nitride contains 2 elements (magnesium and nitrogen) 						
3	Α	84	☑A increasing the volume of acid would not change the rate of reaction ☑B decreasing the size of marble chips would increase the rate of reaction ☑C decreasing the concentration of acid would decrease the rate of reaction ☑D increasing the temperature would increase the rate of reaction						
4	D	72	Particle Location Charge Mass Proton in nucleus +1 1 amu Neutron in nucleus 0 1 amu Electron outside nucleus -1 approx zero						
5	Α	88	Atomic number = number of protons = 26 Mass number = number of protons + number of neutrons = 26 + 30 = 56						
6	Α	15	Air contains approx 20% oxygen, 79% nitrogen and 0.03% carbon dioxide. Burning magnesium will react with oxygen in air to form magnesium oxide. Excess burning magnesium will remove virtually all the oxygen from the air but this gas is not replaced as magnesium oxide is a solid.						
7	D	74	The 79% nitrogen in the air at the start becomes 98% of the remaining gas when the oxygen is removed. ☑A All atoms are free to vibrate, not just atoms in conducting materials like copper ☑B The ability to conduct needs more than atoms to be in close contact to work ☑C This electron arrangement is not the key factor in electrical conduction ☑D The conduction of electricity is dependent on the ability of electrons to jump from atom to atom						
8	С	54	Chromium chloride has the formula chloride ions have the formula chloride $CrCl_3$ Cl $Cr^{n+}(Cl^-)_3$ Cr $Cr^{3+}(Cl^-)_3$						
9	A	41	☑A Combustion is the burning a substance in oxygen ☑B Condensation joins together two molecules removing water at the join point ☑C Dehydration removes water from a molecule leaving a C=C double bond behind ☑D Hydrolysis is breaking down a larger compound adding water across the break						
10	C	94	Fractional Distillation involves the separation of compounds due to their different boiling points. The compounds are collected by condensing the vapours back into liquids.						
11	С	32	$\boxtimes A$ CH ₄ is methane and is the main constituent of natural gas $\boxtimes B$ C ₃ H ₈ is propane and is a major constituent of LPG (liquefied petroleum gas) $\boxtimes C$ C ₈ H ₁₈ is octane and is found in petrol. $\boxtimes D$ C ₁₄ H ₃₀ is most likely to be found in kerosene or diesel						
12	С	81	\blacksquare A cyclobutane C_4H_8 is in a different homologous series from propane C_3H_8 \blacksquare B but-2-ene C_4H_8 is in a different homologous series from propane C_3H_8 \blacksquare C 2-methylbutane C_5H_{12} is in the same homologous series as propane C_3H_8 \blacksquare D 2-methylbut-1-ene C_5H_{10} is in a different homologous series from propane C_3H_8						
13	В	78	☑A but-2-ene has 4 carbons only ☑B pent-2-ene has 5 carbons and C=C double bond between C₂ and C₃ ☑C but-3-ene has 4 carbons only (and should be renumbered to but-2-ene) ☑D pent-3-ene is an incorrectly named compound as lowest number system has not been used						

©JABchem 2020 2 2011 Int2 Marking Scheme

		1	
			■ A ethene would only produce 1-bromoethane
14	В	40	☑B but-1-ene would produce 1-bromobutane and 2-bromobutane
		70	© but-2-ene would only produce 2-bromobutane
			■D hex-3-ene would only produce 3-bromohexane
			☑A C=O group in middle of compound so reaction stays orange
15	A	86	☑B C=O group is on end of molecule so reaction mixture turns green
	<i>,</i> ,		☑C C=O group is on end of molecule so reaction mixture turns green
			☑D C=O group is on end of molecule so reaction mixture turns green
	_		▼A Isomers: same molecular formula but different structural formula
16	D	79	☑B Hydrocarbons: compounds which contain carbon and hydrogen only ☑C Alkanols: homologous series of alcohols with the general formula C _n H _{2n+1} OH
			☑D Carbohydrate: carbon, hydrogen and oxygen compounds with H:O in ratio 2:1
			A Amine groups are found in amino acids but not in proteins
4-	_	-4	☑B C=C double bonds are rarely found in protein molecules
17	\mathcal{C}	51	☑C Peptide link: Found in all proteins and formed as amino acids join together
			☑D Ester link: found in esters, polyesters, fats and oils but not in proteins
			\blacksquare A Sugars: not polymers but are monosaccharides $C_6H_{12}O_6$ or disaccharides $C_{12}H_{22}O_{11}$
4.0	_	40	☑B Animal Fats: triglycerides with ester links between 3 fatty acids and glycerol
18	D	40	☑C Marine Oils: triglycerides with ester links between 3 fatty acids and glycerol
			☑D Vegetable Proteins: polymers formed as amino acids join together
			☑A oils have low melting points as they are liquids at room temperature
10	D	57	☑B oils have low melting points and high degree of unsaturation (contain C=C bonds)
19	В	57	☑C oils have high degree of unsaturation as they have C=C double bonds
			☑D oils have high degree of unsaturation as they have C=C double bonds
		3 49	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
20	С		H-C-O-C-C ₁₇ H ₃₅ O 3H ₂ O H-C-O-C-C ₁₇ H ₃₅ O 3x H-O-C-C ₁₇ H ₃₅ H Fat Glycerol A 3 fatty acids
04	A	10	☑A Sodium oxide is a metal oxide :. dissolves in water to form an alkali (pH>7) ☑B Aluminium oxide is insoluble in water (p8 of data booklet)
21	A	4 60	☑C Sulphur dioxide is a non-metal oxide ∴dissolves in water to form an acid (pH<7)
			☑D Silver oxide is insoluble in water (p8 of data booklet)
			☑A H ⁺ ion concentration decreases as acid is diluted with water
22	D	71	☑B H ⁺ ion concentration decreases and pH of acid increases to pH=7 when diluted.
22	В	74	☑C pH of acid will increase up to pH=7 when diluted with water
			☑D pH of acid will increase up to pH=7 when diluted with water
			☑A ammonia is a weak alkali ∴ not the highest pH
23	N	53	■B pH of hydrochloric acid is below 7 :. not the highest pH
	U		EC pH of sodium chloride is equal to 7 ∴ not the highest pH
			☑D sodium hydroxide is a strong alkali ∴ highest pH
			✓ A calcium carbonate + hydrochloric acid — calcium chloride + water + carbon dioxide
24	A	A 88	■B copper oxide + sulphuric acid copper sulphate + water
- '	/ \		☑ C copper is not reactive enough to react with hydrochloric acid
Ì			■D magnesium + sulphuric acid magnesium sulphate + hydrogen

25	D	90	$H^+ + NO_3^- + K^+ + OH^- \rightarrow K^+ + NO_3^- + H_2O$ Cancel out any spectator ions which appear on both sides $H^+ + NO_3^- + K^+ + OH^- \rightarrow K^+ + NO_3^- + H_2O$ Re-write equation omitting spectator ions $H^+ + OH^- \rightarrow H_2O$						
26	D	85	 ✓ Crim → Crim ✓ A copper is below zinc in electrochemical series ∴ no displacement reaction ✓ B gold is below zinc in electrochemical series ∴ no displacement reaction ✓ C iron is below zinc in electrochemical series ∴ no displacement reaction ✓ D Magnesium is above zinc in electrochemical series ∴ displacement reaction 						
27	В	63	Z is the most reactive as it is the only metal to react with water. Z comes last I is the least reactive as it is the only metal not to react with acid Y comes first						
28	D	56	A Calcium is only made from calcium oxide by molten electrolysis B Copper can be made by heating copper oxide with carbon C Zinc can be made by heating zinc oxide with carbon D silver is unreactive and can be made by heating silver oxide alone						
29	С	86	☑A Both air <u>and</u> water are needed for rusting/corrosion to take place ☑B Both air <u>and</u> water are needed for rusting/corrosion to take place ☑C Both air <u>and</u> water are needed for rusting/corrosion to take place ☑D Salt is not necessary for rusting to take place (salt speeds up rusting)						
30	В	64	☑A Scratched plastic coating does not speed up the rusting ☑B Scratched zinc coating prevents the rusting of iron (zinc on iron is galvanising) ☑C Scratched tin coating would speed up rusting as iron is higher than tin in ECS ☑D Scratched paint coating does not speed up the rusting						

2011 Int2 Chemistry Marking Scheme								
Long Qu	Answer	Reasoning						
1a	Covalent Network Tonic Lattice Metallic Lattice Discrete Covalent Molecular Covalent Network Covalent as it does not conduct in any state and network due to high m.pt. Ionic Lottice Ionic do not conduct when solid but do conduct when molten or in solution Metallic Lattice Metallic substances conduct when solid Discrete Covalent Molecular Covalent as it does not conduct in any state and molecular due to low m.pt.							
1b	SiO ₂	Total number of Si shown = 8 Total number of O shown = 16 Ratio of Si: $O = 8:16 = 1:2$.: Formula = Si O_2						
2a		Any three dimensional trigonal pyramidal shape:						
2b	H O O	Also Acceptable: H O H O H H H H						
3a	$2H_2O_2 \rightarrow O_2 + 2H_2O$	$2H_2O_2 \longrightarrow O_2 + 2H_2O$						
3b	syringe or collection under water	thistle funnel thistle funnel thistle funnel water delivery tube beaker MnO2						
3c	Relights a glowing splint	Gas Hydrogen Oxygen Carbon Dioxide Gas Test Burns with a pop Relights glowing splint Turns lime water milky						
3d	0.6	$2H_2O_2 \longrightarrow O_2 + 2H_2O$ $34g $						
4a(i)	In same state as reactants	Type of Catalyst Definition Homogeneous Catalyst in same state as reactants Heterogeneous Catalyst in different state from reactants						
4a(ii)	RuCl ₂	Write down Valency below each element's symbol Ru Cl Ru Cl RuCl ₂ RuCl ₂						

4b(i)	Line graph:	½mark ½mark ½mark ½mark labelling axes correct scales plotting points drawing line					
4b(ii)	34-35	labelling axes correct scales plotting points drawing line Problem Solving: Estimation of end of reaction					
4b(iii)	0.1	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{2.2 - 1.2}{20 - 10}$ = $\frac{1}{10}$ = 0.1 bar min ⁻¹					
5a	precipitation	A precipitation reaction is when two soluble solution come together and two ions meet and form an insoluble salt.					
5b	9.6	$1 \text{mol (NH}_4)_2 SO_4 = (2 \times 14) + (8 \times 1) + (1 \times 32) + (4 \times 16) = 28 + 8 + 32 + 64 = 132g$ $\mathbf{no of mol} = \frac{\mathbf{mass}}{\mathbf{gfm}} = \frac{13200g}{132g \text{ mol}^{-1}} = 100 \text{ mol}$					
6a	To neutralise the acid	Sodium hydrogencarbonate (also known as sodium bicarbonate) neutralises acid by a neutralisation reaction producing water and carbon dioxide gas					
6b	10cm³ starch solution + 1cm³ water water	PPA Technique Question: The conditions in the control experiment must replicate the original except for the presence of acid. The volume of acid must be replaced with water.					
7	1 Crude oil 2 Styrene 3 polyethenol	Crude oil is the main feedstock from which plastics come from The polymer poly(ethene) ethene poly(propene) propene poly(styrene) styrene poly(chloroethene) chloroethene poly(ethono) soluble in water kevlar very strong poly(ethyne) conducts electricity biopol biodegreadable					
8a	Carbon monoxide is produced	Carbon monoxide gas is produced by incomplete combustion when there is a limited oxygen/air supply.					
8b	Less than 3%	Catalytic convertors turn nitrogen oxides back into nitrogen					
8c	Forms acid rain	Acid rain is formed when SO ₂ dissolves in rain water. Acid rain damages the environment by: Killing Killing Corroding metal Reacting with Decreasing plant life marine life structures carbonate rocks soil pH					
9a	Photosynthesis	$6CO_2 + 6H_2O \xrightarrow{light} C_6H_{12}O_6 + 6O_2$ carbon dioxide water glucose oxygen					
9b	enzymes or biological catalyst	Enzymes in yeast catalyse fermentation: $\begin{array}{c} C_6H_{12}O_6 & \xrightarrow{\text{enzymes in yeast}} & 2C_2H_5OH + 2CO_2\\ & & & & & & & & & & & & & & & & & & & $					
9c	Н Н Н− <i>С</i> − <i>С</i> −ОН Н Н	Ethanol is a 2 carbon structure. Ethan <u>ol</u> is an alcohol with a hydroxyl -OH functional group					
9d	2.96 Volume of Alcohol = $\frac{9 \times 1.25}{3.8} = \frac{11.25}{3.8} = 2.96$						

10a(i)	H COOH 	C=C
10a(ii)	polar covalent bonding	The -OH bonds in both water and the polymer are polar bonds because the attraction for the bonded electrons is different between the atoms in the bond. (The question specifies that the bonding type is IN the water molecules.)
10b	partial dissociation or does not fully ionise	Strong Acid: full dissociation of ions e.g. hydrochloric acid Weak Acid: partial dissociation of molecules into ions e.g. ethanoic acid
11a	Amine	Functional Group of amines: — N
11b	Octyl ethanoate	HOHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
11c(i)	colourless → orange/red	Bromine added from burette reacts with Limonene in flask and flask stays colourless Orange/Red When Limonene has completely reacted with bromine, bromine remains in the flask and flask is orange/red.
11c(ii)	16.0	Average volume always ignores rough (1st) titration. The 1st titration is used to work out roughly the volume the colour change takes place at so the following titration can be carried out extremely accurately. $Average = \frac{16.1 + 15.9}{2} = \frac{32.0}{2} = 16.0 \text{ cm}^3$
11c(iii)	0.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

12a	reductio		Metal compounds contain metal ions. When metals are extracted from metal compounds the metal ions turn into metal atoms. This involves the reduction of metals ions into metal atoms as the metal ions must gain electrons to become metal atoms. Cu²+ copper (II) ions gain of electrons Cu copper atoms					
			Bubbles of Gas			Brown Solid		
12b(i)	Positive Ne	gative	= Chlor				= copper	
120(1)	10311146 146	ganve	2Cl ⁻		_			→ Cu
			Positive electrode	picks up	electrons	Negative e	lectrode	supplies electrons
12b(ii)	Bleaching litmus pap		Chlorine gas blea	ches lit	mus paper	and pH pa	iper	
			Alkaline solutions	have p	H above 7	•		
13a	С		∴ Methyl orange	is yello	w at pH a	bove 4.4		
			Bromothymol B	lue is b	lue at pH	above 7.6		
121-	45 50		Methyl Orange is	yellow	∴ pH is a	bove 4.4		
13b	4.5 - 5.9	,	Bromothymol Blue	e is yell	ow∵. pHi	s below 6.0)	
			Metal 3 is above copper in electrochemical series as electrons flow					
4.4	_		to copper					
14a	3		Metal 3 gives biggest voltage so is furthest from copper in					
			electrochemical series					
			Metals furthest apart in electrochemical series give biggest voltage					
			Metal 3 is the highest metal in electrochemical series (see above)					
4 41			Metal 2 is the lowest metal in the electrochemical series					
14b	2 + 3		Metal 2 is the lowest metal in the electrochemical series Metal 2 is below copper in electrochemical series as electrons					
			flow from copper					
			 Metal 2 gives bigger voltage of metals below copper in ECS 					
14c	0 or zero	o	Same metal attached to itself gives zero voltage in a cell					
	Glucose is covalent and has no ions		A solution containing ions is required for the electrolyte.					
14d			Glucose ($C_6H_{12}O_6$) is covalent as it only contains non-metal atoms and					
			therefore does not complete the circuit as it contains no ions.					
15	. 1.1.*		H ⁺ ions are used up during reaction					
15a	pH increases		∴ as concentration of H ⁺ ions decreases, pH increases					
			As OH- ions can b			•		
156	Ca ₁₀ (PO ₄) ₆ F ₂		calcium hydroxyapatite — calcium fluoroapatite					
15b			$Ca_{10}(PO_4)_6(OH)_2$ $Ca_{10}(PO_4)_6F_2$					